El Monte Union High School District

Course Outline

High School District

Title: Integrated Math 1 P Transitional* (Eng. Dept. Only)	This course meets graduation requirements:	Department/Cluster Approva	1 Date
Sheltered (SDAIE)*Bilingual*	 () English () Fine Arts () Foreign Language () Health & Safety 		
Department: Math	 (X) Math () Physical Education () Science 	· · _	
Grade Level (s): 9-12	() Social Science() Elective	· ·	
Based on Mathematics CCSS			

*Instructional materials appropriate for English Language Learners are required.

**For AP/Honors course attach a page describing how this course is above and beyond a regular course. Also, explain why this course is the equivalent of a college level class.

1. Prerequisite(s): None

2. Short description of course which may also be used in the registration manual:

This UC approved college preparatory course follows an approach typically seen internationally (integrated) that consists of a sequence of three courses, each of which includes number, algebra, geometry, probability and statistics. The fundamental purpose of Integrated Math I is to formalize and extend the mathematics that students learned in the middle schools. The critical areas, organized into units, deepen and extend understanding of linear relationships in part by contrasting them with exponential phenomena, and in part by applying linear models to data that exhibit a linear trend. Integrated Math I uses properties and theorems involving congruent figures to deepen and extend understanding of geometric knowledge from prior grades. The final unit in the course ties together the algebraic and geometric ideas studied. The Mathematical Practice Standards apply throughout each course and together with the content standards, prescribe that students experience mathematics as a coherent, useful and logical subject that make use of their ability to make sense of problem situations.

3. Describe how this course integrates the schools SLOs (School-wide Learning Outcomes): This section may be replaced with specific site SLOs.

All schools have SLOs that refer to students as academic achievers, critical thinkers, and effective communicators. This course addresses the mentioned SLOs.

4. Describe the additional efforts/teaching techniques/methodology to be used to meet the needs of English Language Learners:

The special needs of English language learners are met throughout the course in a number of ways:

- By using the Sheltered Instruction Observation Protocol (SIOP) or other researched based strategies that engage students in learning and communicating their thoughts in the four language domains.
- By probing prior knowledge to connect existing knowledge with knowledge to be learned.
- By teaching concepts for which English learners may not have a cultural reference, including obscure terms, and academic vocabulary.
- By defining abstract concepts in concrete terms, and using specific examples.
- By using graphic organizers and rubrics to set expectations and facilitate organization of thought.
- By using a variety of other visual aids during instruction, such as pictures, films, and realia.
- By encouraging students to express themselves in a variety of modalities.

5. Describe the interdepartmental articulation process for this course:

The study of mathematics in each year of high school leads directly to preparedness for college and career readiness. The skills learned in math are applied to other courses of study including science, social science, and Career Technical Education (CTE). Problem solving, communicating reasoning, modeling and data analysis that are used in mathematics prepare students to apply those same skills in all courses and in real-world scenarios.

6. Describe how this course will integrate academic and vocational concepts, possibly through connecting activities. Describe how this course will address work-based learning/school to career concepts:

Various projects and Performance Tasks that relate real-life problems are implemented throughout the course. These Performance Tasks are usually assigned at the end of each chapter to assess the ability of students to apply concepts learned throughout the chapter towards a real-world situation.

7. Materials of Instruction (Note: Materials of instruction for English Language Learners are required and should be listed below.)

A. Textbook(s) and Core Reading(s):

 Integrated Mathematics 1: Common Core (HMH) Teacher and Student Edition Textbooks. By Timothy Kanold, Edward Burger, Juli Dixon, Matthew Larson, Steven Leinwand Copyright 2015 by Houghton Mifflin Harcourt Publishing Company

- B. Supplemental Materials and Resources:
 - Overhead transparencies or documents for projection
 - Extra practice worksheets
 - Kuta Software
 - Examview Test Generator
 - ALEKS
 - my.hrw.com (online resources from HMH)
 - Performance Tasks
 - Teacher made resources and manipulatives
 - Materials found on-line: projects; performance tasks, problems of the week...
- C. Tools, Equipment, Technology, Manipulatives, Audio-Visual:
 - Protractors
 - Graphing Calculators
 - Projectors
 - Chromebooks
 - Document Readers

8. (see below and attached)

- **Objectives of Course:** The objective of this course is to extend the mathematics students learned in middle school. The Mathematical Practice Standards will be infused throughout the course together with the CCSS for mathematics. This attention to the Practice Standards as well as the Content Standards will ensure that students experience mathematics as coherent, useful, and logical and make use of the student's ability to make sense of problem situations. After completing this course successfully, students will be prepared to proceed to Integrated Math 2.
- Unit detail including projects and activities including duration of units (see attached)

SEE ATTACHED DOCUMENT

 Indicate references to state framework(s)/standards (If state standard is not applicable then national standard should be used)

Student performance standards

Guidelines for grading are:

- A 90-100%
- B 80-89%
- C = 70 79%
- D = 60 69%
- F 59% and below
- Make sense of problems and persevere in solving them.

- Reason abstractly and quantitatively.
- Construct viable arguments and critique the reasoning of others.
- \circ Model with mathematics.
- Use appropriate tools strategically.
- Attend to precision.
- Look for and make use of structure.
- Look for and express regularity in repeated reasoning.

Evaluation/assessment/rubrics

- District assessments (Common Formative Benchmark Assessments)
- Site assessments to include formative assessments
- o Performance Tasks

Include minimal attainment for student to pass course

Students must attain <u>at least</u> 60% overall average for all assignments (Tests, Quizzes, Homework, Classwork, Notes, etc.) for the course.

HMH Integrated Math 1 Unit/Module Detail

Unit 1: Quantities and Modeling

Module 1 – Quantitative Reasoning
1.1: Solving Equations A-REL1 Solve equations and explain each step
1.2: Modeling Quantities
N-Q.2 Scale factors, conversions
1.3: Reporting with Precision and Accuracy NONE
N-Q.3 Significant Digits
Module 2 – Algebraic Models
2.1: Modeling with Expressions NONE
A-SSE.1a Words to symbols
2.2: Creating and Solving Equations
A-CED.1 Word prob. w multi-step equations
2.3: Solving for a Variable
A-CED.4 Formulas, manipulating variables
2.4: Creating and Solving Inequalities
A-CED.3 Solve Inequalities, word problems
2.5: Creating and Solving Compound Inequalities
A-CED.1 Solve/graph, word problems

Unit 2: Understanding Functions

Module 3 – Functions and Models

- 3.1: Graphing Relationships
 - F-IF.4 Interpret graphs
- 3.2: Understanding Relations and Functions
 - F-IF.1 Domain, Range, map, vertical line test
- 3.3: Modeling with Functions
 - F-IF.2 Independent/Dependent, word problems
- 3.4: Graphing Functions
 - F-IF.1 Graph w tables, interpret graphs

Module 4 – Patterns and Sequences (Covered in IM 3 Module 12)

- 4.1: Identifying and Graphing Sequences
 - F-IF.3 Generating and graphing sequences
- 4.2: Constructing Arithmetic Sequences
 - F-LE.2 Using a general form to construct rules
- 4.3: Modeling with Arithmetic Sequences
 - F-BF.1a Word problems

Unit 3: Linear Functions, Equations, and Inequalities

Module 5 – Linear Functions
5.1: Understanding Linear Functions
F-LE.1b Graph standard from
5.2: Using Intercepts
F-IF.7a Graph using intercepts
5.3: Interpreting Rate of Change and Slope
F-IF.6 Slope from a graph, slope formula
Module 6 – Forms of Linear Equations
6.1: Slope-Intercept Form
F-IF.7a Derive and graph Slope-intercept form
6.2: Point-Slope Form
A-REI.1 Derive and graph point-slope form
6.3: Standard Form
A-CED.2 Manipulate equations into standard form
6.4: Transforming Linear Functions
F-BF.3 $f(x)+k$, $kf(x)$, $f(kx)$, $f(x+k)$
6.5: Comparing Properties of Linear Functions
F-IF.9 Compare given graphs, tables, descriptions
Module 7 – Linear Equations and Inequalities
7.1: Modeling Linear Relationships
A-CED.3 Represent constraints
7.2: Using Functions to Solve One-Variable Equations
A-REI.11 Determine approximate solutions
7.3: Linear Inequalities in Two Variables
A-REI.12 Graph linear inequalities
<u>Unit 4: Statistical Models</u>
Module 8 – Multi-Variable Categorical Data (Covered in IM 2 Modules 22 and 23)
8.1: Two-Way Frequency Tables
S-ID.5 Categorical data, two-way tables, frequency
8.2: Relative Frequency
S-ID.5 Conditional frequency, associations
Module 9 – One-Variable Data Distributions (Covered in IM 3 Modules 20 and 21)
9.1: Measures of Center and Spread
S-ID.2 Mean, median, range, standard deviation
9.2: Data Distributions and Outliers
S-ID.1 Dot plots, outliers, compare data distribute
9.3: Histograms and Box Plots
S-ID.2 Construct, compare, estimate
9.4: Normal Distributions
S-ID.2 Symmetry, properties, probabilities

Module 10 – Linear Modeling and Regression (Covered in IM 2 Module 10) 10.1: Scatter Plot and Trend Lines S-ID.6c Correlation, causation, line of best fit 10.2: Fitting a Linear Model to Data S-ID.6b Residuals, linear regression

Unit 5: Linear Systems and Piecewise-Defined Functions

Module 11 – Solving Systems of Linear Equations
11.1: Solving Linear Systems by Graphing
A-REI.6 Consistent, independent, special systems
11.2: Solving Linear Systems by Substitution
A-REI.6 Substitution
11.3: Solving Linear Systems by Adding or Subtracting
A-REI.6 Simple elimination
11.4: Solving Linear Systems by Multiplying First
A-REI.5 Elimination with multiplication

Module 12 – Modeling with Linear Systems

- 12.1: Creating Systems of Linear Equations
 - A-CED.3 Systems from tables, graphs, word problems
- 12.2: Graphing Systems of Linear Inequalities A-REI.12 Graph, determine solutions
- 12.3: Modeling with Linear Systems A-CED.3 Systems inequalities word problems

Module 13 - Piecewise-Defined Functions

- 13.1: Understanding Piecewise-Defined Functions NONE F-IF.7b Explore, evaluate, graph
- 13.2: Absolute Value Functions and Transformation (Covered in IM 3 Module 5) F-IF.7b Graphs
- 13.3: Solving Absolute Value Equations
 - A-REI.3.1 Solve by graphing and algebraically
- 13.4: Solving Absolute Value Inequalities **NONE** A-REI.3.1 Solve by graphing and algebraically

Unit 6: Exponential Relationships

Module 14 – Geometric Sequences and Exponential Functions (Covered in IM 3 Module 12 and 13)
14.1: Understanding Geometric Sequences
F-LE.2 Growth patterns
14.2: Constructing Geometric Sequences
Recursive and explicit rules, derive general rules
14.3: Constructing Exponential Functions
F-LE.2 Construct from words and ordered pairs

14.4: Graphing Exponential Functions F-IF.7e Tables, graphs, increase, decrease 14.5: Transforming Exponential Functions F-BF.3 f(x), f(x)+k, kf(x), f(kx), f(x+k)

- Module 15 Exponential Equations and Models (Covered in IM 3 Module 13 and 14)
 - 15.1: Using Graphs and Properties to Solve Equations with Exponents A-CED.1 Solve algebraically and graphically
 - 15.2: Modeling Exponential Growth and Decay F-IF.7e End behavior, compare growth/decay
 - 15.3: Using Exponential Regression Models S-ID.6a Fitting, plotting, modeling
 - 15.4: Comparing Linear and Exponential Models F-LE.1c Choose between linear and exponential

Unit 7: Transformations and Congruence

- 16.1: Segment Length and Midpoints
 - G-CO.1 Basic terms, construct bisector, midpoint
- 16.2: Angle Measures and Angle Bisectors
 - G-CO.1 measure/construct angles and bisectors
- 16.3: Representing and Describing Transformations G-CO.2 Transformation using coordinate notation
- 16.4: Reasoning and Proof G-CO.9 Inductive and deductive reasoning

Module 17 – Transformations and Symmetry

17.1: Translations

G-CO.4 Translations using vectors

17.2: Reflections

G-CO.4 Reflections using graph paper

17.3: Rotations

G-CO.4 Rotations using ruler and protractor

17.4: Investigating Symmetry G-CO.3 Line and rotational symmetry

Module 18 – Congruent Figures

- 18.1: Sequences of Transformations
 - G-CO.5 combining rotations and reflections
- 18.2: Proving Figures Are Congruent Using Rigid Motions G-CO.6 Congruence using rigid motion
- 18.3: Corresponding Parts of Congruent Triangles are Congruent G-CO.7 CPCTC and proofs

Unit 8: Lines Angles, and Triangles

Module 19 – Lines and Angles

- 19.1: Angles Formed by Intersecting Lines G-CO.9 Vertical, supplementary, complementary
- 19.2: Transversals and Parallel Lines

G-CO.9 Alternate interior, corresponding

- 19.3: Proving Lines are Parallel G-CO.9 Construct parallel lines
- 19.4: Perpendicular Lines
 - G-CO.9 Construct Perpendicular lines & bisectors
- 19.5: Equations of Parallel and Perpendicular Lines G-GPE.5 Slopes, writing equations

Module 20 - Triangle and Congruence Criteria

- 20.1: Exploring What Makes Triangles Congruent G-CO.7 Properties of congruent triangles
 - 20.2: ASA Triangle Congruence G-CO.8 Decide if /prove congruent triangles
 - 20.3: SAS Triangle Congruence G-CO.8 Decide if /prove congruent triangles 20.4: SSS Triangle Congruence
 - G-CO.8 Decide if /prove congruent triangles

Module 21 – Applications of Triangle Congruence

21.1: Justifying Constructions

G-CO.12 Angle, perpendicular and angle bisector

21.2: AAS Triangle Congruence

G-SRT.5 Justify, prove and apply AAS

21.3: HL Triangle Congruence G-SRT.5 Justify, prove and apply HL

Module 22 – Properties of Triangles

- 22.1: Interior and Exterior Angles
 - G-CO.10 In triangles and polygons
- 22.2: Isosceles and Equilateral Triangles
 - G-CO.10 Using properties to prove
- 22.3: Triangle Inequalities **NONE** G-GMD.6 Find possible side lengths

Module 23 – Special Segments in Triangles

- 23.1: Perpendicular Bisectors of TrianglesG-C.3 Concurrency and using properties23.2: Angle Bisectors of Triangles NONE
- G-C.3 Inscribed circle and using properties
- 23.3: Medians and Altitudes of Triangles **NONE** G-CO.10 Balance point, centroid, orthocenter
- 23.4: Midsegments of Triangles **NONE** C-CO.10 Using triangle midsegment theorem

Unit 9: Quadrilaterals and Coordinate Proof

Module 24 – Properties of Quadrilaterals	
24.1: Properties of Parallelograms	
G-CO.11 Opposite sides/angles are congruent	
24.2: Conditions for Parallelograms	
G-CO.11 Using properties to prove parallelogram	
24.3: Properties of Rectangles, Rhombuses, and Squares	
G-CO.11 Sides, angles, diagonals	
24.4: Conditions for Rectangles, Rhombuses, and Squares	
G -CO.11 Using properties to prove	
24.5: Properties and Conditions for Kites and Trapezoids	
G -SRT.5 Using properties to prove	
Module 25 – Coordinate Proof Using Slope and Distance	
25.1: Slope and Parallel Lines	
25.1: Slope and Parallel Lines G -GPE.5 Use side slopes to classify figures	
25.1: Slope and Parallel Lines G -GPE.5 Use side slopes to classify figures 25.2: Slope and Perpendicular Lines	
 25.1: Slope and Parallel Lines G -GPE.5 Use side slopes to classify figures 25.2: Slope and Perpendicular Lines G -GPE.5 Use right angles to classify figures 	
 25.1: Slope and Parallel Lines G -GPE.5 Use side slopes to classify figures 25.2: Slope and Perpendicular Lines G -GPE.5 Use right angles to classify figures 25.3: Coordinate Proof Using Distance with Segments and Triangles 	
 25.1: Slope and Parallel Lines G -GPE.5 Use side slopes to classify figures 25.2: Slope and Perpendicular Lines G -GPE.5 Use right angles to classify figures 25.3: Coordinate Proof Using Distance with Segments and Triangles G -GPE.4 Distance and midpoint formulas 	
 25.1: Slope and Parallel Lines G -GPE.5 Use side slopes to classify figures 25.2: Slope and Perpendicular Lines G -GPE.5 Use right angles to classify figures 25.3: Coordinate Proof Using Distance with Segments and Triangles G -GPE.4 Distance and midpoint formulas 25.4: Coordinate Proof Using Distance and Quadrilaterals 	
 25.1: Slope and Parallel Lines G -GPE.5 Use side slopes to classify figures 25.2: Slope and Perpendicular Lines G -GPE.5 Use right angles to classify figures 25.3: Coordinate Proof Using Distance with Segments and Triangles G -GPE.4 Distance and midpoint formulas 25.4: Coordinate Proof Using Distance and Quadrilaterals G -CO.11 Prove properties quadrilaterals 	
 25.1: Slope and Parallel Lines G -GPE.5 Use side slopes to classify figures 25.2: Slope and Perpendicular Lines G -GPE.5 Use right angles to classify figures 25.3: Coordinate Proof Using Distance with Segments and Triangles G -GPE.4 Distance and midpoint formulas 25.4: Coordinate Proof Using Distance and Quadrilaterals G -CO.11 Prove properties quadrilaterals 25.5: Perimeter and Area on the Coordinate Plane 	

Monday	Tuesday	Wednesday	Thursday	Friday
8/13	8/14	8/15	8/16	8/17
	First Day for	PD for Teachers	PD for Teachers	PD for teachers
	Teachers			
8/20	8/21	8/22	8/23	8/24
First Day for	Vocab Activities	Vocab Activities	Vocab Activities	ALEKS Knowledge
Students	Listening and	Listening and	Listening and	Check
Introduction and	Speaking	Speaking	Speaking	
Syllabus	Checking for	Checking for	Checking for	
	understanding	understanding	understanding	
	ALEKS Know. Check	ALEKS Knowledge	ALEKS Knowledge	
		Check	Check	
8/27	8/28	8/29	8/30	8/31
ALEKS	2.1 Expressions	1.1 Solving	1.1 Solving	ALEKS
		Equations	Equations	
(2 days on ALEKS)	- 4-	- /-	- 1-	
9/3	9/4	9/5	9/6	9/7
No School	2.2 Solving	2.2 Solving	2.3 Literal Equations	2.2 or 2.3 or ALEKS
Labor Day	Equations with	Equations with		
(1 day on ALEKC)	variables on both	variables on both		
(1 day on ALEKS)	sides	sides	0/12	0/14
9/10	9/11 ALEKS/Deview	9/12 Doviou	9/13 Mod 1 1 2 1 2 2	9/14 2.4.Soluing
ALEKS	ALEKS/ REVIEW	Review	IVIOQ 1.1, 2.1-2.3	2.4 Solving
			Test	inequalities
9/17	9/18	9/19	9/20	9/21
ALEKS	2.4 Solving	2.5 Solving	2.5 Solving	2.4/2.5/ALEKS
	Inequalities	Compound	Compound	
		Inequalities	Inequalities	
9/24	9/25	9/26	9/27	9/28
ALEKS	1.2 Ratio and	Review	Test Mod 2.3 -2.4 + 1.2	1st Grading Period
	Proportion			Ends
				District PT
10/1	10/2	10/3	10/4	10/5
ALEKS Knowledge	3.1 Interpreting	3.2 Understanding	3.3 Modeling and	3.1/3.2/3.3/ALEKS
Check	Graph	Functions	Functions	
(2 days on ALEKS)				
10/8	10/9	10/10	10/11	10/12
ALEKS	3.4 Graphing	3.4 Graphing	ALEKS	Review
	Functions	Functions		
10/15	10/16	10/17	10/18	10/19
ALEKS	Review	Test Mod 3	4.1 Patterns and	ALEKS
			Linear vs Non-Linear	
10/22	10/23	10/24	10/25	10/26
ALEKS	4.2 Arithmetic	4.3 Modeling with	14.1	ALEKS
	Sequences	Arithmetic	Intro Geometric	
		Sequences	Sequences	

IM1 2018-2019 Pacing Calendar (Reference Only)

10/29	10/30	10/31	11/1	11/2
ALEKS	14.2	14.3	ALEKS	15.4
	Constructing	Constructing		Comparing Linear
	Geometric	Exponential		and Exponential
	Sequences	Functions		Models
11/5	11/6	11/7	11/8	11/9
		Review	Test Mod 4 and	2nd Grading Period
		I CVICW		Ends
			14.2, 14.3, 13.4	District PT
11/12	11/13	11/14	11/15	11/16
No school	ALEKS Knowledge	51	5 2	
Veteran's Day	check	Understanding	Using Intercents	
veteral 5 Day	CHEEK	Linear Functions		
11/19	11/20	11/21	11/22	11/23
Student/Teacher	Student/Teacher	Student/Teacher	Then here is in a	The physician helider
Eree Day	Free Day	Free Day	Inanksgiving	I nanksgiving noliday
ince bay	The Day	The Day		
11/26	11/27	11/28	11/29	11/30
	52	11/20 11/20	11/25 Poviow	Tost Mod 5
ALLING	J.J.	ALLING	Neview	
	Change and Slope			
12/2		12/5	12/0	12/7
	12/4	12/5	12/0	
ALEKS	6.1(Slope-Intercept	ALEKS	6.2 (Point-Slope	6.3 Chan dand Farms
	form) or 6.2 first		form) or 6.1 2"	Standard Form
	(Point Slope Form)		(Slope-Intercept	
			Form)	
12/10	12/11	12/12	12/12	12/14
12/10 Deview For Finale	12/11 Derformense Teek	12/12 Deview for Finals	12/15 Deview for Finals	12/14 Dovious for Finals
Review For Finals	Performance Task	Review for Finals	Review for Finals	Review for Finals
12/1/	12/18	12/10	12/20	12/21
Review for Finals	FINAL EXAMS	FINAL EXAMS	FINAL EXAMS	Student/Teacher
				Free Day
	Decemi	ber 24 – January 4 WIN	IER VACATION	
1/7	1/8	1/9	1/10	1/11
2 ^{IIII} Semester Begins	ALEKS	6.4	6.5	19.5
ALEKS Knowledge		Transforming Linear	Comparing	Equations of Parallel
Check		Functions	Properties of Linear	and Perpendicular
			Functions	Lines
1/14	1/15	1/16	1/17	1/18
ALEKS	19.5	ALEKS/Review	Review	Test Mod 6 + 19.5
	Equations of Parallel			
	and Perpendicular			
	Lines			
1/21	1/22	1/23	1/24	1/25
<mark>No School</mark>	ALEKS	7.1	7.2	ALEKS
Martin Luther King		Modeling Linear	Using Functions to	
Jr. Birthday		Relationships	Solve One Variable	

			Equations	
4 /20	4 /20	4 /20	4 /24	24
1/28	1/29	1/30 Deview/ALEKS	1/31 Beview	2/1 Test Med 7
ALENS	7.5 Linear Inequalities in	Review/ALERS	Review	
	Two Variables			
2/4	2/5	2/6	2/7	2/8
ALEKS	11.1	11.2	ALEKS	11.3
	Solving Linear	Solving Linear		Solving Linear
	Equations by	Equations by		Equations by Adding
	Graphing	Substitution		or Subtracting
2/11	2/12	2/13	2/14	2/15
	ALEKS	11.4	12.1	ALEKS
No School		Solving Linear	Creating Systems of	
Lincoln Birthday		Equations by	Linear Equations	
2/18	2/19		2/21	2/22
No School		12.2	12.3	1 st grading period
President's Day		Graphing Systems of	Modeling with	ends
		Linear Inequalities	Linear Systems	District PT
2/25	2/26	2/27	2/28	3/1
ALEKS Knowledge	Review	, Review/ALEKS	Test Mod 11+12	9.1
Check				Measures of Center
				and Spread
3/4	3/5	3/6	3/7	3/8
ALEKS	9.2	9.3	10.1	ALEKS
	Data Distributions	Histograms and Box	Scatter Plots and	
- 4	and Outliers	Plots	Trend Lines	
3/11	3/12	3/13	3/14	3/15
ALEKS	10.2 Fitting a linear	Review	ALEKS	Test Wod 9 + 10
	Model to Data			
3/18	3/19	3/20	3/21	3/22
ALEKS	16.1	16.1	16.2	ALEKS
	Segment Lengths	Segment Lengths	Angle Measure and	
	and Midpoints	and Midpoints	Angle Bisectors	
3/25	3/26	3/27	3/28	3/29
ALEKS	16.2	Review	Review/ALEK	Test Mod 16
	Angle Measure and		-	
	Angle Bisectors			
4/1	4/2	4/3	4/4	4/5
<mark>Student/Teacher</mark>	ALEKS	19.1	19.1	2 nd grading period
<mark>Free Day</mark>		Angles Formed by	Angles Formed by	ends
		Intersecting Lines	Intersecting Lines	District PT
4/8	4/9	4/10	4/11	4/12
ALEKS Knowledge	19.2	19.2	ALEKS	19.3
Check	Transversals and	Transversals and		Proving Lines are
A / A F	Parallel Lines	Parallel Lines	A / A O	Parallel
4/15	4/10	4/1/	4/18	4/19

ALEKS	19.3 Proving Lines are Parallel	ALEKS	ALEKS/catch up	<mark>Student/Teacher</mark> Free Day	
April 22-26 Spring Break					
4/29	4/30	5/1	5/2	3/3	
ALEKS	19.4	19.4	ALEKS	Review	
	Perpendicular Lines	Perpendicular Lines			
5/6	5/7	5/8	5/9	5/10	
ALEKS	Review	Test 19	16.3 Describing	ALEKS	
AP US Government, Chinese, Environment al Science	AP Spanish language and Culture, Japanese Lang, Physics 1	AP English Lit and Comp., European History, French	Transformati ons AP Chemistry, Spanish Lit and Cult. German Lang and Cult, Psychology	AP US History, Computer Science Princ., Physics 2	
5/13	5/14	5/15	5/16	5/17	
ALEKS	16.3 Describing	17.1	17.2	ALEKS	
AP Biology, Physics	Transformations	Translations AP English Lang and	Reflections AP Comparative.	AP Microeconomics, Music Theory, Computer Science A.	
C (Mech. Electr. And		Comp. Italian Lang.	Government and	Latin	
Mag.)	AP Calculus AB/BC,	Macroeconomics	Politics, World		
	Art History, Human Geo.		History, Statistics		
5/20	5/21	5/22	5/23	5/24	
ALEKS	17.3 Rotations	17.4 Investigating Symmetry	Review	Test 16.3 + 17	
5/27	5/28	5/29	5/30	5/31	
<mark>No School</mark>	Review	Review	Review	Review	
<mark>Memorial Day</mark> Holiday					
6/3	6/4	6/5	6/6	6/7	
Review	FINAL EXAMS	FINAL EXAMS	FINAL EXAMS	Last Day for Teachers	

California Common Core State Standards for Mathematics

Mathematics I Overview

Number and Quantity

Quantities

• Reason quantitatively and use units to solve problems.

Algebra

Seeing Structure in Expressions

• Interpret the structure of expressions.

Creating Equations

• Create equations that describe numbers or relationships.

Reasoning with Equations and Inequalities

- Understand solving equations as a process of reasoning and explain the reasoning.
- Solve equations and inequalities in one variable.
- Solve systems of equations.
- Represent and solve equations and inequalities graphically.

Mathematical Practices

- **1.** Make sense of problems and persevere in solving them.
- 2. Reason abstractly and quantitatively.
- **3.** Construct viable arguments and critique the reasoning of others.
- 4. Model with mathematics.
- 5. Use appropriate tools strategically.
- 6. Attend to precision.
- 7. Look for and make use of structure.
- **8.** Look for and express regularity in repeated reasoning.

Functions

Interpreting Functions

- Understand the concept of a function and use function notation.
- Interpret functions that arise in applications in terms of the context.
- Analyze functions using different representations.

Building Functions

- Build a function that models a relationship between two quantities.
- Build new functions from existing functions.

Linear, Quadratic, and Exponential Models

- Construct and compare linear, quadratic, and exponential models and solve problems.
- Interpret expressions for functions in terms of the situation they model.

Mathematics I Overview (continued)

Geometry

Congruence

- Experiment with transformations in the plane.
- Understand congruence in terms of rigid motions.
- Make geometric constructions.

Expressing Geometric Properties with Equations

• Use coordinates to prove simple geometric theorems algebraically.

Statistics and Probability

Interpreting Categorical and Quantitative Data

- Summarize, represent, and interpret data on a single count or measurement variable.
- Summarize, represent, and interpret data on two categorical and quantitative variables.
- Interpret linear models.

Number and Quantity

Quantities

Reason quantitatively and use units to solve problems. [Foundation for work with expressions, equations, and functions]

- 1. Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. *
- 2. Define appropriate quantities for the purpose of descriptive modeling. \star
- 3. Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. *

Algebra

Seeing Structure in Expressions

Interpret the structure of expressions. [Linear expressions and exponential expressions with integer exponents]

- Interpret expressions that represent a quantity in terms of its context. *
 - a. Interpret parts of an expression, such as terms, factors, and coefficients. **★**
 - b. Interpret complicated expressions by viewing one or more of their parts as a single entity. For example, interpret $P(1+r)^n$ as the product of P and a factor not depending on P. \star

Creating Equations

Create equations that describe numbers or relationships. [Linear and exponential (integer inputs only); for A-CED.3, linear only]

- 1. Create equations and inequalities in one variable including ones with absolute value and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions. CA ★
- 2. Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. **★**
- 3. Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or non-viable options in a modeling context. For example, represent inequalities describing nutritional and cost constraints on combinations of different foods. *
- 4. Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. For example, rearrange Ohm's law V = IR to highlight resistance R. \star

A-CED

A-SSE

N-0

Reasoning with Equations and Inequalities

Understand solving equations as a process of reasoning and explain the reasoning. [Master linear; learn as general principle.]

1. Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method.

Solve equations and inequalities in one variable.

- 3. Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters. [Linear inequalities; literal equations that are linear in the variables being solved for; exponential of a form, such as $2^x = \frac{1}{16}$.]
- 3.1 Solve one-variable equations and inequalities involving absolute value, graphing the solutions and interpreting them in context. CA

Solve systems of equations. [Linear systems]

- 5. Prove that, given a system of two equations in two variables, replacing one equation by the sum of that equation and a multiple of the other produces a system with the same solutions.
- 6. Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables.

Represent and solve equations and inequalities graphically. [Linear and exponential; learn as general principle.]

- 10. Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line).
- 11. Explain why the *x*-coordinates of the points where the graphs of the equations y = f(x) and y = g(x) intersect are the solutions of the equation f(x) = g(x); find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where f(x) and/or g(x) are linear, polynomial, rational, absolute value, exponential, and logarithmic functions. \star
- 12. Graph the solutions to a linear inequality in two variables as a half-plane (excluding the boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes.

Functions

Interpreting Functions

Understand the concept of a function and use function notation. [Learn as general principle. Focus on linear and exponential (integer domains) and on arithmetic and geometric sequences.]

1. Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then f(x) denotes the output of f corresponding to the input x. The graph of f is the graph of the equation y = f(x).

- 2. Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.
- 3. Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the Fibonacci sequence is defined recursively by f(0) = f(1) = l, f(n+1) = f(n) + f(n-1) for $n \ge l$.

Interpret functions that arise in applications in terms of the context. [Linear and exponential (linear domain)]

- 4. For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. *Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.* ★
- 5. Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. *For example, if the function h gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function.* ★
- 6. Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph. ★

Analyze functions using different representations. [Linear and exponential]

- Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. *
 - a. Graph linear and quadratic functions and show intercepts, maxima, and minima. \star
 - e. Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude. **★**
- 9. Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions).

Building Functions

Build a function that models a relationship between two quantities. [For F-BF.1, 2, linear and exponential (integer inputs)]

- 1. Write a function that describes a relationship between two quantities. \star
 - a. Determine an explicit expression, a recursive process, or steps for calculation from a context. \star
 - b. Combine standard function types using arithmetic operations. For example, build a function that models the temperature of a cooling body by adding a constant function to a decaying exponential, and relate these functions to the model. *
- 2. Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms. ★

F-BF

Mathematics I

M1 Mathematics I

Build new functions from existing functions. [Linear and exponential; focus on vertical translations for exponential.]

3. Identify the effect on the graph of replacing f(x) by f(x) + k, kf(x), f(kx), and f(x+k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.

Linear, Quadratic, and Exponential Models

Construct and compare linear, quadratic, and exponential models and solve problems. [Linear and exponential]

- 1. Distinguish between situations that can be modeled with linear functions and with exponential functions.
 - a. Prove that linear functions grow by equal differences over equal intervals, and that exponential functions grow by equal factors over equal intervals. \star
 - b. Recognize situations in which one quantity changes at a constant rate per unit interval relative to another. 🖈
 - c. Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another. ★
- 2. Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table). 🖈
- Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function.

Interpret expressions for functions in terms of the situation they model. [Linear and exponential of form

 $f(x) = b^x + k$

5. Interpret the parameters in a linear or exponential function in terms of a context. 🖈

Geometry

Congruence

Experiment with transformations in the plane.

- 1. Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point, line, distance along a line, and distance around a circular arc.
- 2. Represent transformations in the plane using, e.g., transparencies and geometry software; describe transformations as functions that take points in the plane as inputs and give other points as outputs. Compare transformations that preserve distance and angle to those that do not (e.g., translation versus horizontal stretch).
- 3. Given a rectangle, parallelogram, trapezoid, or regular polygon, describe the rotations and reflections that carry it onto itself.
- Develop definitions of rotations, reflections, and translations in terms of angles, circles, perpendicular lines, parallel lines, and line segments.
- 5. Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure using, e.g., graph paper, tracing paper, or geometry software. Specify a sequence of transformations that will carry a given figure onto another.

G-CO

F-LE

Understand congruence in terms of rigid motions. [Build on rigid motions as a familiar starting point for development of concept of geometric proof.]

- 6. Use geometric descriptions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given figure; given two figures, use the definition of congruence in terms of rigid motions to decide if they are congruent.
- 7. Use the definition of congruence in terms of rigid motions to show that two triangles are congruent if and only if corresponding pairs of sides and corresponding pairs of angles are congruent.
- 8. Explain how the criteria for triangle congruence (ASA, SAS, and SSS) follow from the definition of congruence in terms of rigid motions.

Make geometric constructions. [Formalize and explain processes.]

- 12. Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic geometric software, etc.). *Copying a segment; copying an angle; bisecting a segment; bisecting an angle; constructing perpendicular lines, including the perpendicular bisector of a line segment; and constructing a line parallel to a given line through a point not on the line.*
- 13. Construct an equilateral triangle, a square, and a regular hexagon inscribed in a circle.

Expressing Geometric Properties with Equations

Use coordinates to prove simple geometric theorems algebraically. [Include distance formula; relate to Pythagorean Theorem.]

- 4. Use coordinates to prove simple geometric theorems algebraically.
- 5. Prove the slope criteria for parallel and perpendicular lines and use them to solve geometric problems (e.g., find the equation of a line parallel or perpendicular to a given line that passes through a given point).
- 7. Use coordinates to compute perimeters of polygons and areas of triangles and rectangles, e.g., using the distance formula. ★

Statistics and Probability

Interpreting Categorical and Quantitative Data

Summarize, represent, and interpret data on a single count or measurement variable.

- 1. Represent data with plots on the real number line (dot plots, histograms, and box plots). **★**
- 2. Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets. ★
- 3. Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points (outliers). ★

G-GPE

S-ID

Summarize, represent, and interpret data on two categorical and quantitative variables. [Linear focus; discuss general principle.]

- Summarize categorical data for two categories in two-way frequency tables. Interpret relative frequencies in the context of the data (including joint, marginal, and conditional relative frequencies). Recognize possible associations and trends in the data.
- 6. Represent data on two quantitative variables on a scatter plot, and describe how the variables are related. 🖈
 - a. Fit a function to the data; use functions fitted to data to solve problems in the context of the data. Use given functions or choose a function suggested by the context. Emphasize linear, quadratic, and exponential models. *
 - b. Informally assess the fit of a function by plotting and analyzing residuals. \star
 - c. Fit a linear function for a scatter plot that suggests a linear association. \star

Interpret linear models.

- 7. Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data. 🖈
- 8. Compute (using technology) and interpret the correlation coefficient of a linear fit. **★**
- 9. Distinguish between correlation and causation. **★**