El Monte Union High School District

Course Outline

District: <u>EMUHSD</u> High School:_____

Course Title: Integrated Math Bridge 1 (MA389)	This course meets graduation requirements:	Department/Cluster Approval Date
Textbook(s): Integrated Math 1 (HMH) Copyright date/Edition: 2015 Transitional*(Eng. Dept. Only) Sheltered (SDAIE)*Bilingual* AP**Honors** Department:Math CTE*** : Industry Sector: Pathway: Check One Introductory: Concentrator: Capstone:	 () English () Fine Arts () Foreign Language () Health & Safety () Math () Physical Education () Science () Social Science () Social Science () Elective This course meets a-g requirements: () "a" – Social Studies () "b" – ELA () "c" – Math () "d" – Lab Science () "e" – Language (not English) () "f" – Vis/Perf Arts () "g" – College prep elective 	
Grade Level (s): Incoming 9th Semester <u>(Summer)</u> Year Year of State Framework Adoption		

*Instructional materials appropriate for English Language Learners are required.

For AP/Honors course **attach a page describing how this course is above and beyond a regular course. Also, explain why this course is the equivalent of a college level class.

***For CTE, attach the CTE course outline created in the online template (http://ctecourse.scoe.net/).

- 1. Prerequisite(s):
 - a. B or better in 8th Grade Common Core Math
 - AND
 - b. Incoming 9th Grade students only
 - AND
 - c. Have not successfully passed Integrated Math 1 or equivalent with a C or better in the 8th Grade

NOTE: <u>Recommended</u> for incoming 9th grade students who have met the above prerequisites and wish to advance to Integrated Math 2.

2. Short description of course which may also be used in the registration manual:

Objectives of course

Integrated Math Bridge 1 is a one-semester summer course intended to provide incoming 9th grade students an opportunity to advance to Integrated Math 2 without taking Integrated Math 1. This course covers the majority of key concepts and standards from Integrated Math 1 to ensure students are successful in Integrated Math 2.

3-5 sentences explaining overall course content

The critical areas, organized into units, deepen and extend understanding of linear relationships in part by contrasting them with exponential phenomena, and in part by applying linear models to data that exhibit a linear trend. This course also uses properties and theorems involving congruent figures to deepen and extend understanding of geometric knowledge from prior grades. The Mathematical Practice Standards apply throughout each course and together with the content standards, prescribe that students experience mathematics as a coherent, useful and logical subject that make use of their ability to make sense of problem situations.

- Indicate references to state framework(s)/standards (If state standard is not applicable then national standards should be used)

Refer to Integrated Math 1 California Common Core State Standards/Framework

- Student performance standards
 - Common Core Standards for Mathematical Practices:
 - Make sense of problems and persevere in solving them
 - o Reason abstractly and quantitatively

- o Construct viable arguments and critique the reasoning of others
- Model with mathematics
- Use appropriate tools strategically
- Attend to precision
- Look for and make use of structure
- Look for and express regularity in repeated reasoning
- Guidelines for Grading:
 - o A 90-100%
 - o B 80-89%
 - o C 70-79%
 - o D 60-69%
 - o F 59% and Below

Evaluation/assessment/rubrics

- Formative and Summative Assessments
 - o Chapter/Module Tests
 - o Quizzes
 - o Homework/Classwork Practice
 - o Performance Tasks

Include minimal attainment for student to pass course

• Students must attain at least 60% D- overall average for all assignments (Tests, Quizzes, Homework, Classwork, Performance Tasks, etc).

3. Course content:

Integrated Math Bridge 1 Content Pacing Guide (For Reference Only)

			`	• /
Assignments: 30%	Tests: 40%	District Fall/Spring Final Exams: 30%		
MONDAY	TUESDAY	WEDNESDAY	THURSDAY	FRIDAY
Day 1 1.1 Solving Equations 1.2 Modeling Quantities 2.1 Modeling with Expressions 2.2 Creating and Solving Equations 2.3 Solving for a Variable	Day 2 2.4 Creating and Solving Inequalities 2.5 Creating and Solving Compound Inequalities Test 1 (Mods 1 & 2) 3.1 Graphing Relationships 3.2 Understanding Relations and Functions	Day 3 3.3 Modeling with Functions 3.4 Graphing Functions 4.1 Identifying and Graphing Sequences 4.2 Constructing Arithmetic Sequences 4.3 Modeling with Arithmetic Sequences	Day 4 Test 2 (Mods 3 & 4) 5.1 Understanding Linear Functions 5.2 Using Intercepts 5.3 Interpreting Rate of Change and Slope 6.1 Slope-Intercept Form	29 No School
Day 5 6.2 Point-Slope Form 6.3 Standard Form 6.5 Comparing Properties of Linear Functions 19.5 Equations of Parallel and Perpendicular Lines Test 3(Mods 5 & 6)	Day 6 7.1 Modeling Linear Relationships 7.2 Using Functions to Solve One-Variable Equations 7.3 Linear Inequalities in Two Variables Review Linear Systems (Use provided worksheet from resources) 13.1	4 No School	Day 7 District Midterm 13.2 Absolute Value Functions and Transformation 13.3 Solving Absolute Value Equations 13.4 Solving Absolute Value Inequalities	Day 8 Test 4 (Mod 13) 14.3 Constructing Exponential Functions 14.4 Graphing Exponential Functions 15.1 Using Graphs and Properties to Solve Equations with Exponents 15.2 Modeling Exponential Growth and Decay 15.4 Comparing Linear and Exponential Models
Day 9	Day 10	Day 11	Day 12	42
Test 5 (Mod 14 & 15) 16.1 Segment Length and Midpoints 16.2 Angle Measures and Angle Bisectors 19.1 Angles Formed by Intersecting Lines 19.2 Transversals and Parallel Lines	Test 6 (Mod 16 not 16.3) 19.3 Proving Lines are Parallel 19.4 Perpendicular Lines 17.1 Translations 17.2 Reflections	Test 7 (Mod 19) 17.3/17.4 Rotations/ Investigating Symmetry 18.1 Sequences of Transformations 18.2 Proving Figures Are Congruent Using Rigid Motions 18.3 Corresponding Parts of Congruent Triangles are Congruent	Review Summer Final District Summer Final	No School

*For CCSS alignment, see Table of Contents at end of document.

4. Describe how this course integrates the schools SLO (former ESLRs- Expected School-wide Learning Results):

- a. Academic Achievers: Students will further develop reading and writing skills via Performance Tasks.
- b. Critical Thinkers: Students will use critical thinking skills in their reading analysis and their various writing

assignments.

c. Technology Competent Users: Usage of graphing calculators or various graphing software such as DESMOS.

- d. Ethical, Respectful Individuals: Students will be respectful while working in diverse collaborative groups.
- e. Active Community Participants: Students will develop skills that will increase their ability to participate in the community.
- 5. Describe the Integrated ELD teaching techniques to be used to meet the needs of English Language Learners:
 - a. Oral and academic language development will be utilized.
 - b. Study skills and Cornell notes will be emphasized.

c. RESEARCH BASED strategies and activities such as SIOP, AVID, metacognitive strategies, Marzano strategies, and Kinsella strategies will assist student learning.

- d. Prior knowledge will be used to build connections and support new learning.
- e. Vocabulary and content development will be highlighted.
- f. Graphic organizers, visuals, realia, audio, and technology software will be utilized during instruction in order to support multiple learning modalities and Universal Design for learning.
- g. Multiple teaching models will be utilized: Concept Attainment Model (CAM), Concrete-Pictorial-Abstract Model (CPAM), Explicit Direct Instruction
- h. Engagement routines such as think-write-pair-share, text mark-up, and group and paired work.
- i. Writing support scaffolds such as sentence-framing and paragraph-framing will be utilized.
- j. Reasoning and justifying answers will be highly encouraged.
- k. Flexible instructional organization for whole-class, group, paired and individualized learning will be implemented.
- 6. Describe the interdepartmental articulation process for this course:

Interdisciplinary articulation is ongoing and driven by a common need to improve mathematical competency skills school-wide. Continuous collaboration with the Science department will be implemented to reinforce application and utilization of mathematical skills across content areas.

7. Describe how this course will integrate academic and vocational concepts, possibly through connecting activities. Describe how this course will address work-based learning/school to career concepts:

Connections will be drawn between skills taught and practiced in this course to applications in various careers and to college readiness. Problem solving application and performance tasks will be emphasized. Students will be taught fundamental career skills such as reasoning, communicating, analyzing data, modeling, and interpretation and solving mathematical problem.

8. Supplemental Materials of Instruction (Note: Materials of instruction for English Language Learners are required and should be listed below.)

Type of material (book, manual, periodical, article, website, primary source document, etc.)	Publisher	Edition/ Year	URL	Primary book, read in its entirety? (Y/N)
HMH Integrated Math 1 CA	Houghton Mifflin	2015		Y
Teacher and Student Editions	Harcourt			
HMH Integrated Math 1 CA	Houghton Mifflin	2015		Ν
Response to Intervention Teacher	Harcourt Publishing			
Resources	Company			

HMH Integrated Math 1 Unit/Module Detail

Unit 1: Quantities and Modeling

Module 1 – Quantitative Reasoning
1.1: Solving Equations
A-REI.1 Solve equations and explain each step
1.2: Modeling Quantities
N-Q.2 Scale factors, conversions
1.3: Reporting with Precision and Accuracy NONE
N-Q.3 Significant Digits
Module 2 – Algebraic Models
2 1: Modeling with Expressions NONE
A-SSE 1a Words to symbols
2 2: Creating and Solving Equations
A CED 1 Word prob w multi-step equations
2.2: Solving for a Variable
2.5. Solving for a variable
A-CED.4 Formulas, manipulating variables
2.4: Creating and Solving Inequalities
A-CED.3 Solve Inequalities, word problems
2.5: Creating and Solving Compound Inequalities
A-CED.1 Solve/graph, word problems
Unit 2: Understanding Functions

Module 3 – Functions and Models 3.1: Graphing Relationships F-IF.4 Interpret graphs 3.2: Understanding Relations and Functions F-IF.1 Domain, Range, map, vertical line test 3.3: Modeling with Functions F-IF.2 Independent/Dependent, word problems 3.4: Graphing Functions F-IF.1 Graph w tables, interpret graphs

Module 4 – Patterns and Sequences (Covered in IM 3 Module 12)

4.1: Identifying and Graphing Sequences

F-IF.3 Generating and graphing sequences

4.2: Constructing Arithmetic Sequences

F-LE.2 Using a general form to construct rules

4.3: Modeling with Arithmetic Sequences

F-BF.1a Word problems

Unit 3: Linear Functions, Equations, and Inequalities

Module 5 – Linear Functions
5.1: Understanding Linear Functions
F-LE.1b Graph standard from
5.2: Using Intercepts
F-IF.7a Graph using intercepts
5.3: Interpreting Rate of Change and Slope
F-IF.6 Slope from a graph, slope formula
Module 6 – Forms of Linear Equations
6.1: Slope-Intercept Form
F-IF.7a Derive and graph Slope-intercept form
6.2: Point-Slope Form
A-REI.1 Derive and graph point-slope form
6.3: Standard Form
A-CED.2 Manipulate equations into standard form
6.4: Transforming Linear Functions
F-BF.3 f(x)+k, kf(x), f(kx), f(x+k)
6.5: Comparing Properties of Linear Functions
F-IF.9 Compare given graphs, tables, descriptions
Module 7 – Linear Equations and Inequalities
7.1: Modeling Linear Relationships
A-CED.3 Represent constraints
7.2: Using Functions to Solve One-Variable Equations
A-REI.11 Determine approximate solutions
7.3: Linear Inequalities in Two Variables
A-REI.12 Graph linear inequalities
Unit 4: Statistical Models
Madala 9 Matti Madala Cata a riad Data (Carrow din DM 2 Madalar 22 and 22)
Noulle 8 – Multi-Variable Calegorical Data (Covered III IIVI 2 Modules 22 and 25)
8.1. 1 wo-way frequency rables S ID 5 Categorical data, two way tables, frequency
8 2: Pelative Frequency
S-ID 5 Conditional frequency associations
5-10.5 Conditional nequency, associations
Module 9 – One-Variable Data Distributions (Covered in IM 3 Modules 20 and 21)
9.1: Measures of Center and Spread
S-ID.2 Mean, median, range, standard deviation
9.2: Data Distributions and Outliers
S-ID.1 Dot plots, outliers, compare data distribute
9.3: Histograms and Box Plots
S-ID.2 Construct, compare, estimate

9.4: Normal Distributions S-ID.2 Symmetry, properties, probabilities

Module 10 – Linear Modeling and Regression (Covered in IM 2 Module 10) 10.1: Scatter Plot and Trend Lines S-ID.6c Correlation, causation, line of best fit 10.2: Fitting a Linear Model to Data S-ID.6b Residuals, linear regression

Unit 5: Linear Systems and Piecewise-Defined Functions

Module 11 - Solving Systems of Linear Equations 11.1: Solving Linear Systems by Graphing A-REI.6 Consistent, independent, special systems 11.2: Solving Linear Systems by Substitution A-REI.6 Substitution 11.3: Solving Linear Systems by Adding or Subtracting A-REI.6 Simple elimination 11.4: Solving Linear Systems by Multiplying First A-REI.5 Elimination with multiplication

Module 12 – Modeling with Linear Systems

- 12.1: Creating Systems of Linear Equations A-CED.3 Systems from tables, graphs, word problems
- 12.2: Graphing Systems of Linear Inequalities A-REI.12 Graph, determine solutions
- 12.3: Modeling with Linear Systems A-CED.3 Systems inequalities word problems

Module 13 - Piecewise-Defined Functions

- 13.1: Understanding Piecewise-Defined Functions NONE F-IF.7b Explore, evaluate, graph
- 13.2: Absolute Value Functions and Transformation (Covered in IM 3 Module 5) F-IF.7b Graphs
- 13.3: Solving Absolute Value Equations
 - A-REI.3.1 Solve by graphing and algebraically
- 13.4: Solving Absolute Value Inequalities NONE
 - A-REI.3.1 Solve by graphing and algebraically

Unit 6: Exponential Relationships

Module 14 – Geometric Sequences and Exponential Functions (Covered in IM 3 Module 12 and 13)

- 14.1: Understanding Geometric Sequences
 - F-LE.2 Growth patterns
- 14.2: Constructing Geometric Sequences Recursive and explicit rules, derive general rules
- 14.3: Constructing Exponential Functions

F-LE.2 Construct from words and ordered pairs

14.4: Graphing Exponential Functions

F-IF.7e Tables, graphs, increase, decrease

- 14.5: Transforming Exponential Functions F-BF.3 f(x), f(x)+k, kf(x), f(kx), f(x+k)
- Module 15 Exponential Equations and Models (Covered in IM 3 Module 13 and 14)
 - 15.1: Using Graphs and Properties to Solve Equations with Exponents
 - A-CED.1 Solve algebraically and graphically
 - 15.2: Modeling Exponential Growth and Decay
 - F-IF.7e End behavior, compare growth/decay
 - 15.3: Using Exponential Regression Models S-ID.6a Fitting, plotting, modeling
 - 15.4: Comparing Linear and Exponential Models F-LE.1c Choose between linear and exponential

Unit 7: Transformations and Congruence

Module	16 -	Tools	of	Geometry
--------	------	-------	----	----------

- 16.1: Segment Length and Midpoints
 - G-CO.1 Basic terms, construct bisector, midpoint
- 16.2: Angle Measures and Angle Bisectors G-CO.1 measure/construct angles and bisectors
- 16.3: Representing and Describing Transformations G-CO.2 Transformation using coordinate notation
- 16.4: Reasoning and Proof G-CO.9 Inductive and deductive reasoning

Module 17 – Transformations and Symmetry

- 17.1: Translations
 - G-CO.4 Translations using vectors
- 17.2: Reflections

G-CO.4 Reflections using graph paper

17.3: Rotations

G-CO.4 Rotations using ruler and protractor

17.4: Investigating Symmetry G-CO.3 Line and rotational symmetry

Module 18 – Congruent Figures

- 18.1: Sequences of Transformations
 - G-CO.5 combining rotations and reflections
- 18.2: Proving Figures Are Congruent Using Rigid Motions G-CO.6 Congruence using rigid motion
- 18.3: Corresponding Parts of Congruent Triangles are Congruent G-CO.7 CPCTC and proofs

Unit 8: Lines Angles, and Triangles

Module 19 – Lines and Angles 19.1: Angles Formed by Intersecting Lines G-CO.9 Vertical, supplementary, complementary 19.2: Transversals and Parallel Lines G-CO.9 Alternate interior, corresponding 19.3: Proving Lines are Parallel G-CO.9 Construct parallel lines 19.4: Perpendicular Lines G-CO.9 Construct Perpendicular lines & bisectors 19.5: Equations of Parallel and Perpendicular Lines
G-GPE.5 Slopes, writing equations
Module 20 – Triangle and Congruence Criteria 20.1: Exploring What Makes Triangles Congruent G-CO.7 Properties of congruent triangles 20.2: ASA Triangle Congruence G-CO.8 Decide if /prove congruent triangles 20.3: SAS Triangle Congruence G-CO.8 Decide if /prove congruent triangles 20.4: SSS Triangle Congruence
G-CO.8 Decide if /prove congruent triangles
 Module 21 – Applications of Triangle Congruence 21.1: Justifying Constructions G-CO.12 Angle, perpendicular and angle bisector 21.2: AAS Triangle Congruence G-SRT.5 Justify, prove and apply AAS 21.3: HL Triangle Congruence G-SRT.5 Justify, prove and apply HL
Module 22 – Properties of Triangles 22.1: Interior and Exterior Angles G-CO.10 In triangles and polygons 22.2: Isosceles and Equilateral Triangles
G-CO.10 Using properties to prove

22.3: Triangle Inequalities **NONE** G-GMD.6 Find possible side lengths

- Module 23 Special Segments in Triangles 23.1: Perpendicular Bisectors of Triangles
 - G-C.3 Concurrency and using properties
 - 23.2: Angle Bisectors of Triangles NONE

G-C.3 Inscribed circle and using properties 23.3: Medians and Altitudes of Triangles **NONE** G-CO.10 Balance point, centroid, orthocenter 23.4: Midsegments of Triangles **NONE**

C-CO.10 Using triangle midsegment theorem

Unit 9: Quadrilaterals and Coordinate Proof

Module 24 – Properties of Quadrilaterals
24.1: Properties of Parallelograms
G-CO.11 Opposite sides/angles are congruent
24.2: Conditions for Parallelograms
G-CO.11 Using properties to prove parallelogram
24.3: Properties of Rectangles, Rhombuses, and Squares
G-CO.11 Sides, angles, diagonals
24.4: Conditions for Rectangles, Rhombuses, and Squares
G -CO.11 Using properties to prove
24.5: Properties and Conditions for Kites and Trapezoids
G -SRT.5 Using properties to prove
Module 25 – Coordinate Proof Using Slope and Distance
25.1: Slope and Parallel Lines
G -GPE.5 Use side slopes to classify figures
25.2: Slope and Perpendicular Lines
G -GPE.5 Use right angles to classify figures
25.3: Coordinate Proof Using Distance with Segments and Triangles
G -GPE.4 Distance and midpoint formulas
25.4: Coordinate Proof Using Distance and Quadrilaterals
C CO 11 Prove granting and dilatorals

- G -CO.11 Prove properties quadrilaterals
- 25.5: Perimeter and Area on the Coordinate Plane G -GPE.7 Areas of composite figures