

Click Here to upgrade

Your complimentary use period has ended. Thank you for using PDF Complete.

ion High School District

Course Outline

High School Arroyo High School

Title: <u>AP Physics C Electricity &</u> <u>Magnetism</u>	This course meets graduation requirements:	Department/Cluster Approv	al Date
Transitional*(Eng. Dept. Only)	() English() Fine Arts	· · ·	
Sheltered (SDAIE)*Bilingual*	 () Foreign Language () Health & Safety 		
AP** <u>X</u> Honors**	() Math() Physical Education		
Department: Science	(X) Science() Social Science		
Grade Level (s): 10-12	() Elective		
Semester X Year			
Year of State Framework Adoption			

*Instructional materials appropriate for English Language Learners are required.

**For AP/Honors course attach a page describing how this course is above and beyond a regular course. Also, explain why this course is the equivalent of a college level class.

- 1. Prerequisite(s):
 - Pass the AP Calculus BC exam with a 3 or better or concurrently taking AP Calculus BC.
 - All students will be required to take the AP Physics C Electricity & Magnetism exam in May.
- 2. Short description of course which may also be used in the registration manual:

This course ordinarily forms the first part of the college sequence that serves as the foundation in physics for students majoring in the physical sciences, engineering, or math. The sequence is parallel to or proceeded by mathematics courses that include calculus. Methods of calculus are used whenever appropriate in formulating physical principles and in applying them to physical problems. The sequence is more intensive and analytic than that in the B course. Strong emphasis is placed on solving a variety of challenging problems, some requiring calculus. The subject matter is principally mechanics, electricity, and magnetism. First semester is devoted to mechanics. Use of calculus in problem solving and in derivations is expected to increase as the course progresses. In the second semester, the primary emphasis is on classical electricity and magnetism. Calculus is used freely in formulating principles and in solving problems. Students will be expected to take the Advanced Placement Physics Exam in May.

Your complimentary use period has ended. Thank you for using

ols ESLRs (Expected School-wide Learning Results):

Unlimited Pages and Expanded Features

ssroom discussions and on classroom projects.

bom and homework assignments.

- Students will conduct lab investigations.

PDF Complete.

- Critical thinkers:
 - Students will understand the process of goal setting and develop a personal plan for high school and beyond.
 - Students will conduct lab investigations that present problems to solve and use critical thinking skills.
 - Students will apply theoretical and practical knowledge acquired to everyday situations.
- Competent users of technology:
 - Students will use word processing and presentation programs to present their work.
 - Students will use computers for research and development of projects.
 - Students will receive supervised Internet instruction and utilize the net as a tool to assist them in their class work.
- Ethical and respectful individuals:
 - Students will be made aware of ethical behavior and the consequences for unethical behavior (cheating, copying, and plagiarizing).
 - Students will work cooperatively in diverse groups.
 - Students will be expected to assume personal responsibility for their actions and spoken words when working with other students.
- Active community participants:
 - Students will be encouraged to respect diverse cultures within the classroom setting.
 - Students will be given opportunities to participate in school clubs and activities that respect cultural diversity.
 - Student will learn to work cooperatively with each other in groups when doing labs and projects.
 - Students will develop working relationships across gender and cultural groups.
- 4. Describe the additional efforts/teaching techniques/methodology to be used to meet the needs of English Language Learners:
 - SDAIE (Specially Designed Academic Instruction in English) strategies will be incorporated into lessons
 - Vocabulary development will be emphasize
 - Visuals/manipulatives will be used
- 5. Describe the interdepartmental articulation process for this course:

When applicable, the science department works with other departments to coordinate student work on course projects. All students take a course to introduce them to computer applications. The individual departments then build computer skills though assigning various projects requiring Power Point presentation, word processing, spreadsheet, and graphing. This course will work hand in hand with AP Calculus AB & BC classes. Projects will be assigned that will correlate with math intensively.

mic and vocational concepts, possibly through connecting ress work-based learning/school to career concepts: athways by attending field trips to colleges and corporations, such

as JPL, having guest speakers come to inform students about their field, and evaluating current topics by analyzing case studies. A House Building project will consists of a floor plan, building of the house, wiring the house the lights, switches, and batteries, and also a presentation to sell the house to potential buyers. This project will teach students about architecture, planning, cost of materials, electrical planning and wiring, and the cost of building a real home and ways to sell the home.

- 7. Materials of Instruction (Note: Materials of instruction for English Language Learners are required and should be listed below.)
 - A. Textbook(s) and Core Reading(s): Text: Halliday, D., Resnick, R., & Walker, J. (2010). *Fundamentals of physics*. (9th ed.). New Jersey: John Wiley & Sons, Inc.
 - B. Supplemental Materials and Resources:
 - Supplementary materials provided by the publisher of the text.
 - Standard supply lab materials, as necessary.
 - C. Tools, Equipment, Technology, Manipulative, Audio-Visual:

Visual presentations will be made using demonstrations, videos, models and/or presentations with an LCD projector. A variety of lab equipment will be utilized, such as lasers, mirrors, lenses, and rollercoaster sets.

lly and analytically)

Click Here to upgrade to Unlimited Pages and Expanded Features

Methodically as a physicist / engineer

Unit detail including projects and activities including duration of units (pacing plan)

S

Pacing Plan

2nd Semester

4th 6 weeks

• Electrostatics

Coulombøs Law, Electric Fields & Gaussø Law, Electric Potential energy & Electric Potential, Capacitance, and Applications

• Electric Circuits Current, Resistance, Power, DC Circuits, and Capacitors

5th 6 weeks

• Magnetic Fields

Forces on Moving Charges, Forces on Current Carrying Wires, and Fields of Long Current Carrying Wires

- Electromagnetism Magnetostatics, Electromagnetic Induction, and Applications
- 6th 6 weeks
- Review for both AP Physics C (Mechanics and Electricity & Magnetism)

Indicate references to state framework(s)/standards (If state standard is not applicable then national standard should be used): The College Board Standards are addressed and implemented within the curriculum.

• Course Outline

2nd Semester

Days	Course Outline (Ch. In Fundamentals)	Lab Activities
5	Ch. 21: Electric Charge	
		Electroscope Lab
		Determine how to charge objects and induce positive and
	Electric Charge	negative charges
	Conductors and Insulators	
	Coulomb's Law	Phet Simulation: Charges & Fields
	Charge is Quantized	
	Charge is Conserved	
5	Ch. 22: Electric Fields	
	Electric Field	
		Equipotential Lines Lab
	Electric Field Lines	Draw equipotential & field lines on conductive paper
	Electric Field due to various Charge	
	Distributions	
7	Ch. 23: Gauss' Law	

		Your complimentary use period has ended.	
T		Thank you for using	
	00	PDF Complete.	
Click	Here	to upgrade to	
Unlin	nited I	Pages and Expanded Features	
11		Electric Potential Energy	
		Electric Potential	
		Equipotential Surfaces	
		Potential & Point Charges	
		Potential due to various charge distributions	
	7	Ch. 25: Canacitars	
	,		Canacitance Pronerties I ab
			Students determine the relationships between: 1) size of plates
		Capacitance	and charge capacity: 2) plate separation and charge capacity.
		Calculating Capacitance for various shapes	and charge capacity, 2/ pince separation and charge capacity.
		Capacitors in Series & Parallel	
		Dielectrics	
	6	Ch 26: Current & Desistance	
	0	Ch. 26: Current & Resistance	
			Desistivity of a Clinky Lak
			Resistivity of a Sliftky Lab
			angth of a toy Slinky and use chemister to measure resistance
		Desistance & Desistivity	length of a toy Slinky and use onlineter to measure resistance
		Resistance & Resistivity	as a function of the number of cons
			Will construct corrige percellal and combination circuits and
			will construct series, parallel, and combination circuits and
		Posistors in perallel and series	digital multimatar proba
		Obmet Law	
		Dillings Law Dowor	
	6	Ch. 27: Circuits	
	0	Work Energy & EME	Phot Simulation: Battery Voltage
		Kirchhoffa Rules	The Sindlaton. Battery Voltage
		Kirchilon@ Kules	Canacitar I ab
			Charging and discharging a capacitor in an RC circuit $w/\Delta \Delta$
			cell & plot the voltage vs time graph: find how much charge
			was stored on the capacitor from the charge and discharge
		RC Circuits	curves
	6	Ch. 28: The Magnetic Field	
	0	Definition of Magnetic Field	
		Magnetic Forces on Moving Charges & Current	
		Hall Effect	
		Circulating Charge	
	6	Ch. 29: Magnetic Fields due to Current	
	ÿ	Magnetic Field due to Current	
		Biot-Savart Law	
		Ampere's Law	
			Solenoid Lab
			The measurement of magnetic field inside a solenoid and its
			variation with current; calculate how many layers of wire are
		Solenoids & Toroids	wrapped around the solenoid
	0	Ch 20. Induction 9 Inductor	
	8	Un. 30: Induction & Inductance	
			Foundary Dishum Lak
		Foreday's I aw of Induction	FARAUAY FICKUP LAD Create an electromagnet that will nick up the most paper elige
			Create an electromagnet that will plok up the most paper clips
		LENZ S LAW	

Ŧ	Sector Co	mplete	Your complimentary use period has ended. Thank you for using PDF Complete.	RL Circuits Lab
Clic	k Here i	to upgrade to		graph current vs. time
Unli	mited F	Pages and Expa		Magnetic Field of the Earth Lab
I				Students measure the magnitude and inclination angle of the
		Energy in Magne	etic Fields	magnetic field of the earth.
6 Ch. 32: Maxwell Equations		l Equations		
	Maxwelløs Equation in Integral Form		ion in Integral Form	
	Implications of Maxwelløs Equations		Aaxwelløs Equations	

• Evaluation/assessment/rubrics

<u>õAö ólevel of work (90-100 %)</u> <u>õBö ólevel work (80-89%)</u> <u>õCö ó level work (70-79%)</u> <u>õDö ó level work (60-69%)</u>

õFö ó level work (50-59%)

The grade is weighted using the following percentages:

Tests/Quizzes ó 55% *Labs, Activities, Projects ó 20% Homework ó 10% Final Exam ó 15%

*Approximately one class period per week/chapter will be devoted to laboratory/field experimentation. Labs will provide opportunities for students to solve problems, to form hypotheses, make observations, quantify/record data, interpret and analyze data and results, draw conclusions, think critically and apply what is explored in the course of their daily lives and future careers.